Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1206220010080021005
Journal of Korean Academy of Physical Therapy Science
2001 Volume.8 No. 2 p.1005 ~ p.1013
The spinal neuronal activity induced by low power laser stimulation
Oh Kyung-Hwan

Choi Young-Deok
Lim Jong-Soo
Abstract
The present study was designed to investigate the effect of low power GaAlAs laser on spinal Fos expression related to the anti-nociceptive effect of laser stimulation. Low power GaAlAs laser was applied to either acupoint or non-acupoint for 2 hour under light inhalation anesthesia. Spinal Fos expression in the dorsal horn was compared to that obtained in inhalation anesthesia control group. Furthermore, we analyzed the effect of the local treatment of lidocaine on the spinal Fos expression evoked by low power GaAlAs laser stimulation. The results were summarized as follows: 1. In the normal animals, only a few Fos like immunoreactive(Fos-IR) neurons were evident in the lumbar spinal cord dorsal horn. Similarly, following prolonged inhalation anesthesia, Fos-IR neurons were absent in the dorsal horn of the lumbar spinal cord. In animals treated with laser stimulation, Fos immunoreactive neurons were increased mainly in the medial half of ipsilateral laminae I-III at lumbar segments L3-5. These findings directly indicated that prolonged anesthesia used in this study did not affect the Fos expression in the spinal cord dorsal horn of intact animals and low power laser stimulation dramatically produced Fos expression in the spinal cord laminae that are related to the anti-nociceptive effect of laser stimulation. 2. In acupoint stimulated animals, 10mW of laser stimulation, not 3mW and 6mW intensity, significantly increased the number of Fos immunoreactive neurons in the spinal dorsal horn(p<0.05). However, laser stimulation on acupoint more dramatically increased the number of Fos immunoreactive neurons in the spinal cord rather than laser stimulatin on non acupoint. These result suggested that laser stimulatin on acupoint was more effective treatment to activate the spinal neuron than non acupoint stimulation. 3. The local treatment of lidocaine totally suppressed the activity of spinal neurons that were induced by lower power 1aser stimulation. These data indicated that the anti-nociceptive effect of laser stimulation was absolutely dependent upon the peripheral nerve activity in the stimulated location. In conclusion, these data indicate that 10mW of low power laser stimulation into acupoint is capable of inducing the spinal Fos expression in the dorsal horn related to the anti-nociceptive effect of laser stimulation, Furthermore, the induction of spinal Fos expression was totally related to the peripheral nerve activity in the laser stimulated area.
KEYWORD
GaAlAs laser stimulation, Immunohistochemistry, c-fos, Spinal cord
FullTexts / Linksout information
 
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)